Most genes encoding cytoplasmic intermediate filament (IF) proteins of the nematode Caenorhabditis elegans are required in late embryogenesis.

نویسندگان

  • Anton Karabinos
  • Jürgen Schünemann
  • Klaus Weber
چکیده

Intestinal cells of C. elegans show an unexpectedly high complexity of cytoplasmic intermediate filament (IF) proteins. Of the 11 known IF genes six are coexpressed in the intestine, i.e. genes B2, C1, C2, D1, D2, and E1. Specific antibodies and GFP-promoter constructs show that genes B2, D1, D2, and E1 are exclusively expressed in intestinal cells. Using RNA interference (RNAi) by microinjection at 25 degrees C rather than at 20 degrees C we observe for the first time lethal phenotypes for C1 and D2. RNAi at 25 degrees C also shows that the known A1 phenotype occurs already in the late embryo after microinjection and is also observed by feeding which was not the case at 20 degrees C. Thus, RNAi at 25 degrees C may also be useful for the future analysis of other nematode genes. Finally, we show that triple RNAi at 20 degrees C is necessary for the combinations B2, D1, E1 and B2, D1, D2 to obtain a phenotype. Together with earlier results on genes A1, A2, A3, B1, and C2 RNAi phenotypes are now established for all 11IF genes except for the A4 gene. RNAi phenotypes except for A2 (early larval lethality) and C2 (adult phenotype) relate to the late embryo. We conclude that in C. elegans cytoplasmic IFs are required for tissue integrity including late embryonic stages. This is in strong contrast to the mouse, where ablation of IF genes apparently does not affect the embryo proper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Essential roles for four cytoplasmic intermediate filament proteins in Caenorhabditis elegans development.

The structural proteins of the cytoplasmic intermediate filaments (IFs) arise in the nematode Caenorhabditis elegans from eight reported genes and an additional three genes now identified in the complete genome. With the use of double-stranded RNA interference (RNAi) for all 11 C. elegans genes encoding cytoplasmic IF proteins, we observe phenotypes for the five genes A1, A2, A3, B1, and C2. Th...

متن کامل

Expression profiles of the essential intermediate filament (IF) protein A2 and the IF protein C2 in the nematode Caenorhabditis elegans

The multigene family of intermediate filament (IF) proteins in Caenorhabditis elegans covers 11 members of which four (A1-3, B1) are essential for development. Suppression of a fifth gene (C2) results in a dumpy phenotype. Expression patterns of three essential genes (A1, A3, B1) were already reported. To begin to analyze the two remaining RNAi phenotypes we followed the expression of the A2 an...

متن کامل

mua-3, a gene required for mechanical tissue integrity in Caenorhabditis elegans, encodes a novel transmembrane protein of epithelial attachment complexes

Normal locomotion of the nematode Caenorhabditis elegans requires transmission of contractile force through a series of mechanical linkages from the myofibrillar lattice of the body wall muscles, across an intervening extracellular matrix and epithelium (the hypodermis) to the cuticle. Mutations in mua-3 cause a separation of the hypodermis from the cuticle, suggesting this gene is required for...

متن کامل

The two actin-interacting protein 1 genes have overlapping and essential function for embryonic development in Caenorhabditis elegans

Disassembly of actin filaments by actin-depolymerizing factor (ADF)/cofilin and actin-interacting protein 1 (AIP1) is a conserved mechanism to promote reorganization of the actin cytoskeleton. We previously reported that unc-78, an AIP1 gene in the nematode Caenorhabditis elegans, is required for organized assembly of sarcomeric actin filaments in the body wall muscle. unc-78 functions in larva...

متن کامل

A HECT domain ubiquitin ligase closely related to the mammalian protein WWP1 is essential for Caenorhabditis elegans embryogenesis.

The highly conserved ubiquitin/proteasome pathway controls the degradation of many critical regulatory proteins. Proteins are posttranslationally conjugated to ubiquitin through a concerted set of reactions involving activating (E1), conjugating (E2), and ligase (E3) enzymes. Ubiquitination targets proteins for proteolysis via the proteasome and may regulate protein function independent of prot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • European journal of cell biology

دوره 83 9  شماره 

صفحات  -

تاریخ انتشار 2004